28 research outputs found

    How Does the Body Aļ¬€ect the Mind? Role of Cardiorespiratory Coherence in the Spectrum of Emotions

    Get PDF
    The brain is considered to be the primary generator and regulator of emotions; however, aļ¬€erent signals originating throughout the body are detected by the autonomic nervous system (ANS) and brainstem, and, in turn, can modulate emotional processes. During stress and negative emotional states, levels of cardiorespiratory coherence (CRC) decrease, and a shift occurs toward sympathetic dominance. In contrast, CRC levels increase during more positive emotional states, and a shift occurs toward parasympathetic dominance. Te dynamic changes in CRC that accompany diļ¬€erent emotions can provide insights into how the activity of the limbic system and aļ¬€erent feedback manifest as emotions. The authors propose that the brainstem and CRC are involved in important feedback mechanisms that modulate emotions and higher cortical areas. That mechanism may be one of many mechanisms that underlie the physiological and neurological changes that are experienced during pranayama and meditation and may support the use of those techniques to treat various mood disorders and reduce stress

    Augmentation of Mind-body Therapy and Role of Deep Slow Breathing

    Get PDF
    Mind-body therapies have been shown to be effective in clinical treatment of disorders such as high blood pressure and stress. Significant differences in the effectiveness of mindā€“body therapies have been shown and a common link among the therapies has yet to be defined. This article overviews the role of slow rhythmic breathing in physiological as well as therapeutic effects of mind-body therapies. Slow deep breathing practice has important implications as it may underlie the basic mechanism that synchronizes the brain with the autonomic response. This article reviews studies that include the effect of deep slow breathing with or without mind-body therapy exercises. In utero studies that monitor patterns of fetal breathing reveal sympathetic activation with irregular, shallow fast breathing movements compared to slow deep breathing. Recognition of respiratory mechanisms in mind-body therapies can lead to development of more effective relaxation exercises that may incorporate deep slow breathing in clinical applications

    Dynamic Change of Awareness during Meditation Techniques: Neural and Physiological Correlates

    Get PDF
    Recent fndings illustrate how changes in consciousness accommodated by neural correlates and plasticity of the brain advance a model of perceptual change as a function of meditative practice. During the mindbody response neural correlates of changing awareness illustrate how the autonomic nervous system shifts from a sympathetic dominant to a parasympathetic dominant state. Expansion of awareness during the practice of meditation techniques can be linked to the Default Mode Network (DMN), a network of brain regions that is active when the one is not focused on the outside world and the brain is restful yet awake (Chen et al., 2008). A model is presented illustrating the dynamic mindbody response before and after mindfulness meditation, and connections are made with prefrontal cortex activity, the cardiac and respiratory center, the thalamus and amygdala, the DMN and cortical function connectivity. The default status of the DMN changes corresponding to autonomic modulation resulting from meditation practice

    Etiology of phantom limb syndrome: Insights from a 3D default space consciousness model

    Get PDF
    In this article, we examine phantom limb syndrome to gain insights into how the brain functions as the mind and how consciousness arises. We further explore our previously proposed consciousness model in which consciousness and body schema arise when information from throughout the body is processed by corticothalamic feedback loops and integrated by the thalamus. The parietal lobe spatially maps visual and non-visual information and the thalamus integrates and recreates this processed sensory information within a three-dimensional space termed the ā€˜ā€˜3D default space.ā€™ā€™ We propose that phantom limb syndrome and phantom limb pain arise when the afferent signaling from the amputated limb is lost but the neural circuits remain intact. In addition, integration of conflicting sensory information within the default 3D space and the loss of inhibitory afferent feedback to efferent motor activity from the amputated limb may underlie phantom limb pain

    Functional representation of vision within the mind: A visual consciousness model based in 3D default space

    Get PDF
    The human eyes and brain, which have finite boundaries, create a ā€˜ā€˜virtualā€™ā€™ space within our central nervous system that interprets and perceives a space that appears boundless and infinite. Using insights from studies on the visual system, we propose a novel fast processing mechanism involving the eyes, visual pathways, and cortex where external vision is imperceptibly processed in our brain in real time creating an internal representation of external space that appears as an external view. We introduce the existence of a three-dimension default space consisting of intrapersonal body space that serves as the framework where visual and non-visual sensory information is sensed and experienced. We propose that the thalamus integrates processed information from corticothalamic feedback loops and fills-in the neural component of 3D default space with an internal visual representation of external space, leading to the experience of visual consciousness. This visual space inherently evades perception so we have introduced three easy clinical tests that can assist in experiencing this visual space. We also review visual neuroanatomical pathways, binocular vision, neurological disorders, and visual phenomenon to elucidate how the representation of external visible space is recreated within the mind

    MIND-BODY RESPONSE AND NEUROPHYSIOLOGICAL CHANGES DURING STRESS AND MEDITATION: CENTRAL ROLE OF HOMEOSTASIS

    Get PDF
    Stress profoundly impacts quality of life and may lead to various diseases and conditions. Understanding the underlying physiological and neurological processes that take place during stress and meditation techniques may be critical for effectively treating stress-related diseases. The article examines a hypothetical physiological homeostatic response that compares and contrasts changes in central and peripheral oscillations during stress and meditation, and relates these to changes in the autonomic system and neurological activity. The authors discuss how cardiorespiratory synchronization, which occurs during the parasympathetic response and meditation, influences and modulates activity and oscillations of the brain and autonomic nervous system. Evidence is presented on how synchronization of cardiac and respiratory rates during meditation may lead to a homeostatic increase in cellular membrane potentials in neurons and other cells throughout the body. These potential membrane changes may underlie the reduced activity in the amygdala, and other cortical areas during meditation, and research examining these changes may foster better understanding of the restorative properties and health benefits of meditation

    Mechanism of development of pre-eclampsia linking breathing disorders to endothelial dysfunction

    Get PDF
    High blood pressure is an important component of pre-eclampsia. The underlying mechanism of development of hypertension in pre-eclampsia is complicated and still remains obscure. Several theories have been advanced including endothelial dysfunction, uteroplacental insufficiency leading to generalized vasoconstriction, increased cardiac output, and sympathetic hyperactivity. Increased blood flow and pressure are thought to lead to capillary dilatation, which damages end-organ sites, leading to hypertension, proteinuria and edema. Additional theories have been put forward based on epidemiological research, implicating immunological and genetic factors. None of these theories have been substantiated. Based on a review of literature this paper postulates that the initiating event for the development of preeclampsia is intermittent hypoxia associated with irregular breathing during sleep, hypoapnea, apnea,inadequate respiratory excursions during the waking hours and inadequate cardiopulmonary synchronization (abnormal sympatho-vagal balance)

    Widespread depolarization during expiration: A source of respiratory drive?

    Get PDF
    Respiration influences various pacemakers and rhythms of the body during inspiration and expiration but the underlying mechanisms are relatively unknown. Understanding this phenomenon is important, as breathing disorders, breath holding, and hyperventilation can lead to significant medical conditions. We discuss the physiological modulation of heart rhythm, blood pressure, sympathetic nerve activity, EEG, and other changes observed during inspiration and expiration. We also correlate the intracellular mitochondrial respiratory metabolic processes with real-time breathing and correlate membrane potential changes with inspiration and expiration. We propose that widespread minor hyperpolarization occurs during inspiration and widespread minor depolarization occurs during expiration. This depolarization is likely a source of respiratory drive. Further knowledge of intracellular and extracellular ionic changes associated with respiration will enhance our understanding of respiration and its role as a modulator of cellular membrane potential. This could expand treatment options for a wide range of health conditions, such as breathing disorders, stress-related disorders, and further our understanding of the Heringā€“Breuer reflex and respiratory sinus arrhythmia

    Meditation Experiences, Self, and Boundaries of Consciousness

    Get PDF
    Our experiences with the external world are possible mainly through vision, hearing, taste, touch, and smell providing us a sense of reality. How the brain is able to seamlessly integrate stimuli from our external and internal world into our sense of reality has yet to be adequately explained in the literature. We have previously proposed a three-dimensional unified model of consciousness that partly explains the dynamic mechanism. Here we further expand our model and include illustrations to provide a better conception of the ill-defined space within the self, providing insight into a unified mind-body concept. In this article, we propose that our senses ā€œsuper-imposeā€ on an existing dynamic space within us after a slight, imperceptible delay. The existing space includes the entire intrapersonal space and can also be called the ā€œthe bodyā€™s internal 3D default spaceā€. We provide examples from meditation experiences to help explain how the sense of ā€˜selfā€™ can be experienced through meditation practice associated with underlying physiological processes that take place through cardio-respiratory synchronization and coherence that is developed among areas of the brain. Meditation practice can help keep the body in a parasympathetic dominant state during meditation, allowing an experience of inner ā€˜selfā€™. Understanding this physical and functional space could help unlock the mysteries of the function of memory and cognition, allowing clinicians to better recognize and treat disorders of the mind by recommending proven techniques to reduce stress as an adjunct to medication treatment

    Self-Regulation of Breathing as a Primary Treatment for Anxiety

    Get PDF
    Understanding the autonomic nervous system and homeostatic changes associated with emotions remains a major challenge for neuroscientists and a fundamental prerequisite to treat anxiety, stress, and emotional disorders. Based on recent publications, the inter-relationship between respiration and emotions and the influence of respiration on autonomic changes, and subsequent widespread membrane potential changes resulting from changes in homeostasis are discussed. We hypothesize that reversing homeostatic alterations with meditation and breathing techniques rather than targeting neurotransmitters with medication may be a superior method to address the whole body changes that occur in stress, anxiety, and depression. Detrimental effects of stress, negative emotions, and sympathetic dominance of the autonomic nervous system have been shown to be counteracted by different forms of meditation, relaxation, and breathing techniques. We propose that these breathing techniques could be used as firstline and supplemental treatments for stress, anxiety, depression, and some emotional disorders
    corecore